7-substituted pterins in humans with suspected pterin-4a-carbinolamine dehydratase deficiency. Mechanism of formation via non-enzymatic transformation from 6-substituted pterins.
نویسندگان
چکیده
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.
منابع مشابه
7-Substituted pterins: formation during phenylalanine hydroxylation in the absence of dehydratase.
Previously we described a new form of human hyperphenylalaninemia characterized by the formation of 7-substituted pterins. We present evidence strongly suggesting that the 7-substituted pterins are formed by rearrangement of 6-substituted pterins. This rearrangement occurs during the phenylalanine hydroxylase reaction cycle which normally involves the enzymes phenylalanine hydroxylase, pterin-4...
متن کاملOn the Mechanism of Pterin-4a-carbinolamine Dehydratase - Synthesis of New Substrate Analogues and Interaction with the Enzyme
Introduction Pterin-4a-carbinolamine dehydratase (PCD) is a bifunctional mamnlalian enzyme that acts, on the one hand, as dimerization cofactor of the hepatocyte nuclear factor 1-a. (1). On the other hand it takes part in the metabolism of tetrahydrobiopterin, the natural cofactor of the aromatic amino acid hydroxylases. PCD catalyzes the dehydration of 4a-OH-tetrahydrobiopterin (carbinolamine)...
متن کاملStudies on the enzymatic and transcriptional activity of the dimerization cofactor for hepatocyte nuclear factor 1.
The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resem...
متن کاملHuman pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1 alpha. Characterization and kinetic analysis of wild-type and mutant enzymes.
Pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor-1 alpha is a protein with two different functions. We have overexpressed and purified the human wild-type protein, and its Cys81Ser and Cys81Arg mutants. The Cys81Arg mutant has been proposed to be causative in a hyperphenylalaninaemic patient [Citron, B. A., Kaufman, S., Milstien, S., Naylor, E. W., Greene,...
متن کاملPhhB, a Pseudomonas aeruginosa homolog of mammalian pterin 4a-carbinolamine dehydratase/DCoH, does not regulate expression of phenylalanine hydroxylase at the transcriptional level.
Pterin 4a-carbinolamine dehydratase is bifunctional in mammals. In addition to playing a catalytic role in pterin recycling in the cytoplasm, it plays a regulatory role in the nucleus, where it acts as a dimerization-cofactor component (called DCoH) for the transcriptional activator HNF-1alpha. A thus far unique operon in Pseudomonas aeruginosa contains a gene encoding a homolog (PhhB) of the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of biochemistry
دوره 208 1 شماره
صفحات -
تاریخ انتشار 1992